
Data Mapping from Product Models to Object Oriented Simulation Models

Per Sahlin

Bris Data AB
Västerlånggatan 27, 111 29 Stockholm, SWEDEN

per.sahlin@brisdata.se
www.brisdata.se

KEYWORDS

CAD, product model, continuous simulation, hybrid simulation,
data mapping, quality assurance

ABSTRACT

The advent of equation-based modelling languages such as
Modelica opens a new world of improved productivity to
advanced simulationists. However, they also form an excellent
basis for end-user applications intended for the less sophisticated
user, who typically uses simulation as one of several aids for
design decision support. In this context, the issue of automated
data mapping from CAD and other more specialized design
representations becomes important. This paper discusses the
various design representations that are required for simulation and
the mappings of data between them. A concrete example from
automated generation of a large-scale equation model for building
indoor climate and energy simulation is presented.

INTRODUCTION

Object-oriented equation-based modelling tools and associated
languages such as Dymola (Elmqvist et al. 1996), gPROMS
(Barton and Pantelides 1994, Oh and Pantelides 1996), IDA/NMF
(Sahlin 1996), and lately Modelica (Elmqvist et al. 1999) and
VHDL-AMS (IEEE, 1997) allow management of large-scale
simulation models with unprecedented efficiency. However, for a
design engineer, with a need to rapidly and repeatedly evaluate a
range of performance measures, these tools are rarely useful in
their basic form. Several different simulation evaluations must be
carried out to optimize the design, each one typically involving
hundreds of parameters, driving functions and initial guesses.
Task specific tools are therefore needed to set up the problem and
large amounts of data have to be transferred from a CAD
environment.

3D CAD tools are today fully implemented in many (but not all)
engineering fields. The evolution of Integrated Design
Environments (IDE) such as IDEAS is a natural consequence,

providing the user with advanced model analysis capabilities. In
an IDE, not just geometry but other properties, such as material,
color and texture of the design object are handled. Such an
extended CAD representation which accommodates a large class
of relevant data of a product is sometimes referred to as a product
model.

Product Data Models (PDM) are of course immensely more
useful if they are standardized, so that product data can be
communicated between different tools and actors. STEP
(STandard for the Exchange of Product model data, ISO TC 184,
1993) is since the mid eighties an international effort to
standardize product descriptions for many domains. EXPRESS
(Schenck and Wilson 1994) is the data modelling language in
which STEP models are described. However, the idea of a single,
standardized product model that holds all relevant data of a
complex design is today regarded to be quite utopic for most real-
scale applications with multiple actors. Every aspect of and actor
on the design has special information needs that in most cases
would be impossible to fully integrate within a finite amount of
work. And even if an agreement about the content and structure of
such a grand model indeed was reached, it would be utterly
impractical to use and soon be dated.

The solution is to limit the scope of the central product model to
the key data that is of interest to several different actors and to
introduce instead a number of aspect models that are tailored to
certain design tasks. An aspect model may contain additional
information and there may even be a semantic mismatch between
a given aspect model and the central product model. The
existence of multiple aspect models, the integrity of which must
be kept intact through the design evolution, necessitates efficient
methods for data mapping between different design
representations.

The objective of this paper is to discuss some of the aspect
models and mapping methods that are needed for simulation
design tasks. We will especially focus on data mapping to the
aspect models that are formed by modern equation-based
simulation models.

In the next section, an overview of needed representations and
mapping methods is given. This is followed by a presentation of a
tool for two of the final stages in the required chain of
representations, IDA Modeller. Finally two application examples
of data mapping in in conjunction with IDA Modeller are
presented and discussed.

SIMULATION DATA FROM PRODUCT MODELS

In a future oriented design scenario, multiple formal
representations of the design must coexist. A number of special
purpose models (aspect models) derive their data from a central
product model (Figure 1). For a certain object-oriented simulation
exercise, an appropriate chain of representations might be:

1. A general product model. This is the repository of all common
project data. From this representation, all interesting views are

F

PM

Simulation aspect models

DT
DT

DT

DTDTDT

DT

DT

DT

igure 1. Several Design Tasks interact with a central
Product Model. Some design tasks utilize simulation
decision support. Each type of simulation requires a

separate aspect model of the design.

derived, e.g., drawings, bills of materials, costs, and input data
for various simulation tools. All members of a design team
interact with the product model. The product model must
evolve in structure and complexity in parallel with the
progress of the design.

2. A physically oriented aspect model for a certain type of
simulation. This is a physical description of the design that
contains all the data that are relevant for a certain class of
simulation experiments. Designers (not simulation experts)
interact with this representation to formulate simulation
experiments in physical terms. The aspect model may be
locally edited to optimize the design without need to involve
the general product model in each design iteration.

3. The mathematical representation. This is the realm of object-
oriented simulation languages such as Modelica. At this level,
the design is represented by a large hybrid differential-
algebraic system of equations. Manipulation of the model
generally requires mathematical modelling skills far beyond
those of a design engineer.

Data for each successive stage is derived (mapped) from the
previous. The user must also at each stage be able to view,
manipulate, and add to the automatically derived data. The
mapping of data between each stage must be transparent, so that a
critical user can resolve the origin (in the previous stage) and
processing background of each datum. Enabling quality assurance

of the data mapping process is equally important as the validation
of the general, unparameterized, simulation model itself.

Traditional task specific industrial simulation tools are typically
limited to level 2 in the depicted scenario. The mathematical
representation of the simulated system (level 3) is frequently
hidden inside the simulation tool, without possibility of user
inspection or manipulation. Usually both the mathematical
representation itself and the mapping of data to this representation
are informal. The user is unable to inspect the mapping code and
resulting equations. This lack of transparency and formality
creates a situation where the user is left to trust that the simulation
tool does a sufficiently good job, without having a real possibility
to check this in detail for a given case. If, on the other hand, a
formal language such as Modelica is used for the simulation
model, sufficient transparency can be provided to enable quality
control of the generated model.

Development and standardization of general product models
(level 1) is still to a large extent a research topic. The issue of data
mapping from a STEP based general product model to various
aspect models for simulation has been studied in several projects,
e.g., the European COMBINE projects (Augenbroe 1995). For
many applications, where the complexity and/or standardization
level of the underlying product model is limited, commercial
integrated design environments with simulation support has
existed for some time. However, most (all?) of these
environments make use of traditional, monolithic, simulation

Figure 2. The (level 2) physical view of a building for thermal simulation of indoor climate. Geometrical and material data
may be imported from a CAD representation. The user adds data as necessary for the simulation experiment. For a one-room

model, as depicted, the user has access to a few hundred parameters in the physical view.

tools and neither the mapping process, nor the generated
mathematical model are open for quality assurance.

Next, we will discuss a tool for design representation at levels 2
and 3, IDA Modeller, and associated transparent data mapping
techniques. Usage of IDA Modeller is illustrated by an IDA-based
building simulation application, IDA Indoor Climate and Energy
(ICE), that gives users full access to levels 2 and 3, and to the data
mapping between these levels. This application is installed in
about two hundred copies in Scandinavian design offices.

IDA MODELLER

IDA Modeller is the front-end of the IDA Simulation
Environment. Models in IDA are described by hybrid differential-
algebraic systems of equations. Presently the Neutral Model
Format (NMF) (Sahlin et al. 1996) is used to express models.
Work is underway to also allow Modelica models. IDA Solver is
the numerical solver of the IDA Simulation Environment. IDA
Solver relies on pre-compiled (and non-causal) component
models (packaged as Windows DLL's.) Due to this, users of IDA
applications may freely interconnect component models, without
need for a compiler. This allows shipment of very flexible end-
user applications at a low cost.

In the most common ICE simulation project, the user builds a
model of his system in the physical view, performs a simulation

experiment and inspects the results in the same view. The level 3
(math) representation of the system is generated "on the fly" and
is never presented to the user. However, in many cases, there is a
need to inspect or adapt the math model directly. In such cases, a
separate instantiated data model is kept for each level. A third
alternative is available for advanced users. They may directly
build a math model of the simulated system using the precompiled
component models. Conceptually, this corresponds to the work of
building a SIMULINK model with ready-made components.
However, acausal (input-output free) port-level connections,
variable units and descriptions, make the work a great deal more
productive.

In other IDA end-user applications, the user interface is less
sophisticated, and the level 3 model is the only representation of
the simulated system. Figure 4 shows an example of such an
application for clean-room design. Additional (physical level)
parameters are then tagged on to the instantiated components and
subsystems to provide the user with modelling support. The
application also typically contains assertion algorithms to support
the user in the correct formulation of solvable problems and to
distribute "global" parameters into the various components.

Figure 3. The (level 3) mathematical view of the simulated system. In IDA Modeller, this view is described with NMF. The depicted
model of a single room has approximately 600 equations and a similar number of parameters. It may be interactively edited by the
user. Typical simulation experiments take a few minutes to simulate and encompass a few thousand timesteps. Large models may

involve some ten thousand equations. Simulation time increases about linearly with problem size.

DATA MAPPING

The code for generation of the math model from the physical
(level 2) system description may become quite complex for real-
scale applications. The readability and structure of this code is
essential to reach the objective of a maintainable and quality
assurable application. Several dedicated data mapping languages
exist in the STEP world, e.g. EXPRESS-M, C, V, and X (Verhoef
et al. 1995). However, a detailed discussion of mapping language
properties is beyond our scope here.

IDA Modeller relies on a tailored mapping language for the
instantiation, parameterization and connection of math models.
The ICE application contains approximately two thousand lines of
such mapping code. Below is an example of the operations and
code that are involved in a typical generation segment.

Example: spawning a radiator

In the lower left corner of Figure 2, a water-based radiator has
been added to the level 2 model. The size of the physical box
represents in this case the physical dimensions of the radiator.
Opening the radiator will reveal an additional four parameters that
are required to characterize the device in level 2. (These may also
be accessed from a data base). However, the single object (the
radiator) that has been added to the level 2 description leads to a
number of required level 3 objects and generation operations. The
following steps are carried out:

1) Generate the following NMF objects in the room subsystem
(c.f. Figure 3, right window, lower left corner)
a) A proportional controller for the mass flow through the

radiator

b) A piece of wall (1D transient conduction model) behind
the radiator

c) A model for calculation of solar radiation and other
ambient conditions behind the radiator

d) The radiator itself
2) Extend the vector of Hot-and-cold-subsurfaces in the

radiation model of the room; provide the physical
coordinates of the new surface

3) On the parent level above the room, instantiate a supply and
return water system, if it does not already exist.

The automated instantiation of a level 3 component, e.g. the
radiator, involves the following principal steps:

i. Compute any local parameters
ii. Compute the graphical position of the component
iii. Compute and transfer all non-default parameters
iv. Make logical and graphical connections to neighboring

components
v. Make logical and graphical connections to the boundary

of the current subsystem

Below is a sample fragment of the generation code for the
instantiation of the radiator objects of a room (step 1d above).
The lisp oriented syntax has been chosen for ease of
implementation rather than beauty. The mapping language will in
the future most likely be made a part of the general script
language of IDA, but this is still an area of active experimentation
and development.

Figure 4. A sample project from a clean room design application.

(:group WatRad ;;generate a group of objects with names starting with "WatRad"

 :source
 ;generate an ordered list of source objects
 (:call list-water_radiator :zone)

 :type CEWatHet ; NMF type to instantiate

 :set ((nHCSurf (:call get-HCSurf-number :zone :source)) ; compute object's number
)

 ;; instantiate at this graphical position
 :at (180 (+ 70 (i* 120 nHCSurf)) 205 (+ 125 (i* 120 nHCSurf)))

 :parameters ;; parameter mapping from source to target object
 ;;<to par> <from source>
 ((k k)
 (n n)
 (strip_h strip_width)
 (length (/ (* dx dy) strip_width))
 (cp_liq [:building syspars cpliq])
 (hback -1)
 (dP0 [:building syspars dp0_water])
 (mmax design_massflow)
 (mmin [:building syspars water_mmin])

 ;initial values
 (DpOK 1)
 (Mok 1)
)

 :set ((yincr (i* 120 nhcsurf)))
 :connections ;; make logical and graphical port connections

 ((Front (nmfzone TqHCFront nhcsurf) :at ((204 (+ 83 yincr)) (219 205)))
 (BackConv (nmfzone TqHCBack nhcsurf) :at ((204 (+ 112 yincr)) (219 227)))
 (BackWall ((:format "HCBackwall_~D" nhcsurf) Term_a)
 :at ((181 (+ 92 yincr)) (159 (+ 92 yincr))))
 (Control ((:format "WatRadCtrl_~D" :number) OutSignalLink 1)
 :at ((198 (+ 71 yincr)) (198 (+ 53 yincr)) (169 (+ 53 yincr))))
 (AirTemp ((:format "WatRadCtrl_~D" :number) MeasureLink)
 :at ((188 (+ 71 yincr)) (188 (+ 62 yincr)) (169 (+ 62 yincr))))
)
 :boundary-connections ;; connect with subsystem boundary (for further connection by
parent)

 ((Inlet (:format "Sup_hot_~D" :number)
 :at ((197 (+ 124 yincr)) (197 (+ 143 yincr)) (10 (+ 143 yincr)))
 :role sup_hot
 :line-color #.red
 :line-style 2)
 (Outlet (:format "Rtn_hot_~D" :number)
 :at ((187 (+ 124 yincr)) (187 (+ 135 yincr)) (10 (+ 135 yincr)))
 :role rtn_hot
 :line-style 2)
)

)

The generation clause creates a group of level 3 objects. It is
driven by a corresponding list of level 2 source objects. Each
water based radiator belongs to the array of source objects of class
HCSurf (Hot and Cold Surfaces.) Other members in this array
may be, e.g., electric radiators and cooling panels. nHCSurf refers
to the radiator's identity in the array of HCSurfaces. This number
is used to identify the proper connection partners and ports in the
neighboring components.

EXPERIENCES WITH THE CURRENT
IMPLEMENTATION

The current level 2 to 3 mapping method has proven to be easy to
implement and maintain. It is believed to be a great deal more
practical than a corresponding hard coding (as normal methods of
source and target objects) would have been. Nevertheless, it is
wanting in several ways. From the point of view of the end-user,
two major problems exist:

1. Each update of level 2 and corresponding level 3 generation
will overwrite the previous level 3 model. There is currently
no way to use the powerful generation mechanisms
repeatedly while working at level 3. A simple way to partly
alleviate this problem would be to allow recording of level 3
user operations and then provide the possibility of replay
after a new level 3 model has been created. Such a solution is
underway but is likely to have the common problems of any
macro recording, i.e. unpredictable results when applied in a
different context. Another way to solve the overwrite

problem would be to let the user explicitly control what part
of the model that is regenerated. This, on the other hand,
may be difficult to use correctly, since most users are only
vaguely aware of the structure of the source and target
models. A third way might be to allow incremental
generation of the level 3 model triggered by changes in the
level 2 description.

2. The current generation algorithm will name spawned objects
according to its own needs. It is difficult for the user to trace
the origin of a level 3 object without resorting to
identification by parameter values. This problem is rather
straightforward to solve at the expense of some algorithm
and/or name structure complexity.

In spite of these problems, the current implementation works well
for a great majority of ICE users. There is ample opportunity to
study user behavior in order to create practical solutions to the
problems discussed.

THE SMOG TO ICE PROTOTYPE

In the ICE development, some prototype work has been done to
study the mapping between levels 1 and 2 (Nordqvist and Noack
1998). In this work, a proprietary 3D CAD model (SMOG, by
Olof Granlund Oy, Finland, http://www.granlund.fi/) has been
used. Initially in the mapping process, a trivial mapping of the
native SMOG format to a STEP physical file is done. Then a
formal mapping code in EXPRESS-C is applied to generate
another STEP file that corresponds to the level 2 data model of
ICE. Finally, another trivial mapping is done to generate the
proprietary ICE file format. An overview of the whole process in
depicted in Figure 5. Figure 6 shows a screen capture from
SMOG and the corresponding ICE (level 2) view of the system
can be seen in Figure 7.

The SMOG to ICE prototype is wanting in several ways:

- The SMOG application is not widely used
- All SMOG spaces are mapped to ICE zones. Additional

work done in ICE, e.g. deleting some zones and furnishing
the model with missing data, such as loads, setpoints,
HVAC-system etc., has to be repeated each time a revision is
done in the SMOG model.

- It is limited to rectangular (shoebox) zones.

Work is currently underway to generalize the CAD interface of
ICE to accept IFC1 compatible models and to remedy the other
shortcomings of the prototype. A commercial quality release is
scheduled for Q3 2000.

CONCLUSIONS

The new object-oriented and equation-based simulation methods
are structured and robust enough to enable usage of automated
model generation mechanisms. This in turn enables us to build
end-user simulation applications with unprecedented structure,
transparency and maintenance properties. However, new areas of
needed research and development are also uncovered in the area
of mapping between different types of data models.

At this point, we would argue that equation-based target models
are sufficiently special to motivate tailored mapping methods,
some examples of which have been illustrated in this paper.
However, it would be an interesting exercise to use some of the
general mapping languages (Verhoef et al. 1995) for the same
purpose, to investigate their relative performance.

1 Industrial Foundation Classes is an emerging standard
data model for building product models

If the tailored mapping methods indeed prove superior, it is a
natural consequence to standardize their form in languages such
as Modelica.

REFERENCES

Augenbroe, G.L.M. (ed.). 1995. Combine 2 Final report,
Contract JOU2-CT92-0196, Delft Univ. of Technology, 1995

Barton P.I., and C.C. Pantelides. 1994. "Modeling of combined
discrete/continuous processes". AIChE J., 40, pp. 966--979,
1994

Bris Data AB. 1999. IDA Simulation Environment - User's
Manual, Bris Data AB, Stockholm, Sweden, September 1999
(see also http://www.brisdata.se)

Elmqvist H., D. Brück, and M. Otter. 1996. Dymola --- User's
Manual. Dynasim AB, Research Park Ideon, Lund, Sweden,
1996

H. Elmqvist, B. Bachmann, F. Boudaud, J. Broenink, D. Brück,
T. Ernst, R. Franke, P. Fritzson, A. Jeandel, P. Grozman, K.
Juslin, D. Kågedahl, M. Klose, N. Loubere, S. E. Mattsson, P.
Mostermann, H. Nilsson, M. Otter, P. Sahlin, A. Schneider, H.
Tummescheit, H.Vangheluwe. 1999. "Modelica 1.2 - A Unified
Object-Oriented Language for Physical Systems Modeling.
TUTORIAL and RATIONALE". June 15, 1999 (available at
http://www.modelica.org)

IEEE. 1997. "Standard VHDL Analog and Mixed-Signal
Extensions". Technical Report IEEE 1076.1, IEEE, March 1997

ISO TC 184. 1993. The STEP Standard, draft international
standard DIS 10303, continuously since 1992 published in
several different parts

Oh M., and C.C. Pantelides 1996. "A modelling and simulation
language for combined lumped and distributed parameter
systems". Computers and Chemical Engineering, 20, pp. 611--
633, 1996

Nordqvist, W. and R. Noack. 1997. "A Mapping Study", Dept.
of Construction Management and Economics, KTH, Stockholm,
1997

Sahlin. P., A. Bring, E.F.Sowell. 1996. "The Neutral Model
Format for Building Simulation, Version 3.02", Dept. of
Building Sciences, KTH, Stockholm, June 1996 (available at
http://www.brisdata.se/nmf)

Schenck, D.A., and P.R. Wilson. 1994. Information Modeling:
The EXPRESS Way, ISBN 0-19-508714-3, Oxford Univ. Press,
1994

Verhoef, M., T. Liebich and R. Amor. 1995. A multi-paradigm
mapping method survey, Fischer, Law and Luiten (eds),
"Modelling Of Buildings Through Their Life-Cycle", IB/W78-
TG10 publication 180, p 233-247, Stanford University, August
1995

Figure 5. The structure of the SMOG to ICE mapping prototype.

Figure 6. A two-room example in SMOG.

Figure 7. The two-room example when mapped into ICE.

