
3D Animation and Programmable 2D Graphics
for Visualization of Simulations in OpenModelica

Henrik Eriksson, Henrik Magnusson, Peter Fritzson, Adrian Pop

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, S-581 83 Linköping, Sweden

petfr@ida.liu.se

Abstract
This paper describes recent work on visualization of simulation results from simulating Modelica models in Open-
Modelica. A new 3D graphics package with interactive animation and a new flexible programmable 2D graphics
have been added to OpenModelica. The 2D graphics package provides very flexible usage, either directly from a
simulation, from the electronic book client OMNotebook, or programmable graphics, called directly from a
Modelica model.

1 Need for More Flexible 2D Graphics

1.1 Limitations of Previous Plotting Approach

OpenModelica [1][4] has previously used the external program PtPlot [6] for generation of 2D graphics from
simulation data generated from Modelica [2][3] model simulations. Although this program is well suited for this
kind of tasks, this solution has some flaws. Firstly, PtPlot is written in Java, which means that the Java Virtual
Machine has to be installed for OpenModelica to work as intended. Furthermore, integration with OMNotebook
[10][11] is difficult which has led to the current situation where diagrams are treated as images. This makes inter-
activity, e.g. zooming, scaling or suchlike, impossible for diagrams that have been inserted into a document.
PtPlot is only available from the API of OMC (OpenModelica Compiler) and cannot be used from within Mode-
lica models. This prevents for example models that create diagrams or other kinds of graphics.

The 2D plotting deals mainly with the most common types of diagrams, two-dimensional line diagrams and
two-dimensional parametric diagrams, and variations of these. A more complete graphics package should for ex-
ample contain more types of diagrams and provide means to create animations, but implementation of this kind of
features is future work..

1.2 New 2D Graphics Package

In order to solve the problems mentioned above a new graphics package [8] has been developed. Parts connected
to OMNotebook has been developed in the same environment as this, i.e. in C++ and Qt. CORBA is still used to
send commands from OMNotebook to OMC, but instead of calling PtPlot to create diagrams OMC sends the
simulation data to OMNotebook, which handles the presentation (see Figure 1). As OMNotebook now has access
to all source data it will now be possible to manipulate diagrams, e.g. zoom or change scales.

To allow the use of graphics functions from within Modelica models a new Modelica interface has been devel-
oped. This utilizes an external library to communicate with OMNotebook. In addition to this, a number of new
functions that can be used for drawing geometric objects like circles, rectangles and lines have been added.

The main goal of this work has been to extend the data visualization capabilities of OpenModelica. This is ac-
complished by solving the problems of the previous solution, but also by introducing new ways to draw diagrams
and other types of graphics from within Modelica models. The following is a summary of the capabilities of the
new 2D graphics package:

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

184

• Interaction with OMNotebook. The graphics package has been developed to be fully integrated with OM-
Notebook and allow modifications of diagrams that have been previously created.

• Usage without OMNotebook. If the functionality of the graphics package is used without OMNotebook, a new
window should be opened to present the resulting graphics.

• Logarithmic scaling. Some applications of OpenModelica produce simulation data with large value ranges,
which is hard to make good plots of. One solution to this problem is to scale the diagram logarithmically, and
this is allowed by the graphics package.

• Zoom. To allow studying of small variations the user is allowed to zoom in and out in a diagram.
• Support for graphic programming. To allow creation of Modelica models that are able to draw illustrations,

show diagrams and suchlike, it is possible to use the graphics package not only from the external API of
OMC, but also from within Modelica models. To accomplish this a new Modelica interface for the graphics
package has been created.

• Programmable Modelica API. The Modelica API is defined by a number of Modelica functions, located in the
package Modelica.Utils.Graph, which use external libraries to access functionality of the graphics package.
These functions include the following:

• plot(x). Draws a two-dimensional line diagram of x as a function of time.
• plotParametric(x,y) Draws a two-dimensional parametric diagram with y as a function of x.
• plotTable([x1, .., y1; .. ; xn, .., yn]). Draws a two-dimensional parametric diagram with y as a function of

x.
• drawRect(x1, x2, y1, y2). Draws a rectangle with vertices in (x1, y1) and (x2, y2).
• drawEllipse(x1, x2, y1, y2). Draws an ellipse with the size of a rectangle with vertices in (x1, y1) and (x2,

y2).
• drawLine(x1, x2, y1, y2). Draws a line from (x1, y1) to (x2, y2).

Figure 1. Plotting architecture with the new 2D graphics package.

1.3 TCP/IP Based Data Transfer

A new TCP/IP-based interface has been developed and is used to transfer simulation data from OMC to OMNote-
book. This is built with socket classes from Qt and also allows simulation data to be transferred during a running
simulation (see Figure 2). Usage of Qt classes has some drawbacks, OMC depends on Qt libraries for example,
but there are also advantages. Qt provides, for instance, powerful ways to serialize data and sockets that can be
used to transfer these data streams. Besides, Qt is already required to build OMNotebook and OMShell, and the
necessary runtime libraries are already distributed with the OpenModelica setup program (for Windows). Drawing
of diagrams and other kinds of graphics is done using the classes QGraphicsScene and QGraphicsView, which
were introduced in Qt 4.2. These provides methods to create and present various kinds of graphic primitives, e.g.
lines, circles and suchlike, but also more complex objects can be generated.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

185

Figure 2. Data transfer during simulation using the new plotting package.

Two types of data transfer via TCP/IP have been implemented, one for sending generated simulation data during a
running simulation and one for sending required data when specific commands, such as plot or plotParametric,
are given. These types have many things in common, but both are required as it probably is desirable for instance
to be able to plot data without having to run a previously run simulation again. The latter type also includes pa-
rameters that govern how the generated diagram will appear.

TCP/IP communication is also used to implement the Modelica interface of the graphics package. This consists
of functions like drawEllipse, which when evaluated will use a socket to send its parameters to a receiving
GraphWidget.

The different modes of data transfer are identified by a text string that is sent in the first package of a data
stream. The following modes have been implemented:

• simulationDataStream. Indicates that the following data stream contains simulation data that should be
stored in the active GraphWidget for later use.

• ptolemyDataStream. Indicates that the following data stream contains simulation data and formatting in-
formation required to immediately create a diagram.

• drawEllipse. Indicates that the package contains information necessary to draw an ellipse in the active
GraphWidget.

• drawLine. Like drawEllipse, but for a line.
• drawPoint. Like drawEllipse, but for a point.
• drawRect. Line drawEllipse, but for a rectangle.
• drawText. Indicates that the package contains information necessary to print text in the active GraphWidget.
• clear. Indicates that the active GraphWidget should be reset.
• closeServer. Indicates that the active GraphWidget should stop listening on the current port. This is used to

control which GraphWidget that is considered active.
• hold. Indicates that the active GraphWidget should not be cleared before new graphics is shown.

The following commands have been added to the API of OMC in order to control the data transfer interface:

• enableSendData(Boolean). Determines whether or not simulation data should be transferred during simula-
tion.

• setDataPort(int). Determines which port the data transfer interface should use.
• setVariableFilter("x1", "x2", . . . , "xn"). Determines the variables that should have their values sent dur-

ing simulation. An empty string indicates that all variables will be sent.

2 The GraphWidget
GraphWidget is the name of the new widget that has been developed to create and present graphics. GraphWidget
is derived from the Qt class QGraphicsView and thereby inherits an area where graphics can be drawn. In addition
to this, functionality has been added for instance to handle TCP/IP communication with OMC.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

186

2.1 Reception of Simulation Data

Reception of simulation data will occur if the word simulationDataStream is the first in the identifying package
sent by OMC. The values that are received are stored internally in the active GraphWidget and can later be used
for data plotting by clicking on Simulation data in the context menu of the GraphWidget or by clicking the button
D, which appears to the right of the input field when the simulation data has been transferred.

2.2 Drawing of Diagrams

Drawing of diagrams can be initiated in two ways. Either by sending commands like plot or plotParametric to
OMC, which responds by sending a data stream described in Sections2.2.1 1.3 and , or by using the dialog Simu-
lation data to create diagrams from simulation data stored in the GraphWidget.

2.2.1 Drawing from a Data Stream

If the identifying keyword of the data stream from OMC is ptolemyDataStream, a diagram will be created in-
stantly from the stream, which besides simulation data contains variable names, diagram titles and other informa-
tion necessary to generate a plot. For each pair of x and y variables, typically a time value and a variable value of
that time, a QGraphicsEllipseItem object is created and inserted into the QGraphicsScene object of the Graph-
Widget. The visibility of this object is controlled by the drawPoints parameter of the plot command. If a previous
data point has been received, QGraphicsLine objects are then created to connect the two most recent data points
according to the interpolation mode that is selected. The visibility of these lines is determined by the drawLine
parameter. The received simulation data is also stored internally in the GraphWidget and can later be used for in-
stance to create new curves or to scale the diagram logarithmically.

2.2.2 Drawing from Stored Data

This procedure is essentially identical to that described in Section 2.2.1. The data that is used is however not re-
ceived through a data stream but instead taken from internal tables, where it has previously been stored.

2.3 Drawing of Geometrical Objects

The commands provided by the Modelica interface for drawing of geometrical objects require, unlike the plot and
plotParametric commands, no simulation data to be sent. All necessary information is given as parameters (de-
fault values are used if no values are specified). When OMC receives a command like this, a data stream is cre-
ated, and the parameters are sent through this in a packet like the following.

(QString) id
(double) x0
(double) y0
(double) x1
(double) y1
(QColor) color
(QColor) fill color

The string id specifies the purpose of the transmission. See Section 1.3 for a list of possible values.

2.4 External Usage

As the GraphWidget is a widget, it is easy to use in applications other than OMNotebook. This has been used to
enable presentation of diagrams when functions of the graphics package are used from other applications than
OMNotebook, for instance by running a script. If a command like plot or plotParametric is given, or if a model
using functions of the graphics package is simulated it is desirable that a window showing the diagram is dis-
played even if OMNotebook is not running. This problem has been solved by developing new application, ext.exe,
which is essentially just a GraphWidget in a dialog window. This application is launched if OMC fails to connect
to a GraphWidget when a command of the graphics package has been received.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

187

3 2D Plot Examples

3.1 Simple 2D Plot

To create a simple time plot the model HelloWorld defined in DrModelica is simulated. To reduce the amount of
simulation data in this example the number of intervals is limited with the argument numberOfIntervals=10.
The simulation is started with the command below.

simulate(HelloWorld, startTime=0, stopTime=4, numberOfIntervals=10);

When the simulation is finished the file HelloWorld res.plt contains the simulation data. The contents of the
file is the following (some formatting has been applied).

0 1
4.440892098500626e-013 0.9999999999995559
0.4444444444444444 0.6411803884299349
0.8888888888888888 0.411112290507163
1.333333333333333 0.2635971381157249
1.777777777777778 0.1690133154060587
2.222222222222222 0.1083680232218813
2.666666666666667 0.06948345122279623
3.111111111111112 0.04455142624447787
3.555555555555556 0.02856550078454138
4 0.01831563888872685

Diagrams are now created with the new graphics package by using the following command.

plot(x);

The diagram shown in Figure 3 seems to correspond well with the data.

Figure 3. Simple 2D plot of the HelloWorld example.

3.2 Plotting During Simulation

When running long simulations, or if plotting without need for commands like plot or plotParametric is desired,
the interface for transfer of simulation data during running simulations can be used. This is enabled by running the
following command.

enableSendData(true)

The same command, but with the parameter false, is used to disable the interface. Enabling of the interface has
some drawbacks though. The simulation time will be longer as the transfer of data will require some resources.

If the simulation data would have been plotted anyway, some of this time will be saved later however. To re-
duce the amount of data that has to be transferred, and thereby reduce the time needed to do so, the interesting
variables in the model can be specified with the command setVariableFilter. If for instance the model HelloWorld
is to be simulated the following commands can be used.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

188

class HelloWorld
 Real x(start = 1);
 parameter Real a = 1;
equation
 der(x) = - a * x;
end HelloWorld;

enableSendData(true);
setVariableFilter({x});
simulate(HelloWorld, startTime=0, stopTime=25);

When the simulation data has been transferred the button D will appear to the right of the input field. By pressing
this the dialog Simulation data, where new curves can be created.

3.3 Programmable Drawing of 2D Graphics

The graphics package provides functions for drawing of basic geometrical objects in the graphics area. These can
be used from Modelica models and are executed when the model is simulated. The following model shows how
these functions can be used to draw ellipses, rectangles, and lines.
model testGeom
 parameter Integer n=10;
 protected
 Boolean b[n,n];
equation
 for x in 1:n loop
 for y in 1:n loop
 when initial() then
 if((y == 1) or (y == 10) or (x == 1) or (x == 10)) then
 b[x,y] = pltpkg.rect(x, y, x+1, y+1, fillColor = "blue",
 color = "green");
 else if(y >= 4 and y <= 5 and x >= 4 and x <= 5) then
 b[x,y] = pltpkg.line(x, y, x+1, y+1, color = "red");
 else
 b[x,y] = pltpkg.ellipse(x, y, x+1, y+1, fillColor = "yellow",
 color = "black");
 end if;
 end if;
 end when;
 end for;
 end for;
end testGeom;

Figure 4. Programmable drawing of rectangles and ellipses.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

189

4 Associating 3D Graphics Information with Modelica
. There are two main approaches to add 3D graphics information to Modelica objects:

• Graphical annotations
• Graphical objects

Both of these approaches were investigated, but the second was finally chosen.

4.1 Visualization Annotation

None of the existing Modelica annotation types are suited for describing visualization information. To overcome
this problem, a new visualization type has to be defined. What is needed is to connect a property of the visual rep-
resentation with a variable in the simulation. For example, if we are visualizing a falling object, the variable con-
taining the height of the object must be connected to the y position of a visualization.

annotation(Visualization(frame_a="x", frame_b="y", color="red", shape="cube"))

A trial implementation of the annotation approach was done, but some serious flaws was discovered with the ap-
proach and the implementation was discarded.

• The annotation system is very inflexible. Querying the OpenModelica compiler for an annotation yields only a
list of values with no specification of the contents. To support many different kinds of visualizations, i.e. dis-
playing cubes, spheres, with or without color etc, a new annotation would have to be defined for each type.
Since there is no polymorphism in the annotation syntax, this quickly becomes problematic.

• Type checking is impossible when the only connection between a property (such as the position of an object)
and the variable containing the information is the name of the variable. In the example above, there is no
guarantee that x is of a type that is usable as a position.

• Syntax checking is not performed on annotations in the sense that it is impossible to know at compile time. if
the visualization annotation is correctly specified.

4.2 Object Based Visualization

Since one important goal of this work is to come up with a system for visualization that might be used for simula-
tions done with the Modelica MultiBody library [12], it follows that much can be learned from investigating cur-
rently available solutions. There are commercial software packages available that can visualize MultiBody simula-
tions.

The MultiBody package is well suited for visualization. Entities in a MultiBody simulation correspond to
physical entities in a real world and as such have many of the properties needed to correctly display them within a
visualization of the simulation, such as position and rotation. Other properties such as color and shape can easily
be added as properties or be decided based on the object type.

Instead of using annotations to encode information about how a certain object is supposed to look when visual-
ized, object based visualization creates additional Modelica objects of a predetermined type that can be known to
the client actually doing the visualization. These objects contain variables such as position, rotation and size that
can be connected to the simulated variables using ordinary Modelica equations. When asked to visualize a model,
the OpenModelica compiler can find variables in the model that are in the visualization package and only send
only those datasets over to the client doing the visualization, in this case OMNotebook.

Taking inspiration from the MultiBody library, a small package has been designed that provides a minimal set
of classes that can be connected to variables in the simulation. It is created as a Modelica package and can be in-
cluded in the Modelica Library. The package is called SimpleVisual, and consists of a small hierarchy of
classes that in increasing detail can describe properties of a visualized object. It is implemented on top of the Qt
graphics package called Coin3D [7]. More information is available in [9]. A comprehensive earlier work on inte-
grating and generating 3D graphics from Modelica models is reported in [13].

5 3D Graphics Examples
This section gives a short introduction to how the SimpleVisual package is used.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

190

5.1 BouncingBall

The bouncing ball model is a simple example to the Modelica language. Adding visualization of the bouncing ball
using the SimpleVisual package is very straightforward.
model BouncingBall
 parameter Real e=0.7 "coefficient of restitution";
 parameter Real g=9.81 "gravity acceleration";
 Real h(start=10) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start=true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
equation
 impact=h <= 0.0;
 der(v)=if flying then -g else 0;
 der(h)=v;
 when {h <= 0.0 and v <= 0.0,impact} then
 v_new=if edge(impact) then -e*pre(v) else 0;
 flying=v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

To run a simulation of the bouncing ball, create a new InputCell and call the simulate command. The simulate
command takes a model, start time, and an end time as arguments.

simulate(BouncingBall, start=0, end=5s);

5.1.1 Adding Visualization

The bouncing ball will be simulated with a red sphere. We will let the variable h control the y position of the
sphere. Since the ball has a size and the model describes the bouncing movement of a point, we will use that size
to translate the visualization slightly upwards. First, we must import the SimpleVisual package and create an ob-
ject to visualize. That is done by adding a few lines to the beginning of the BouncingBall model.
model BouncingBall
import SimpleVisual.*
SimpleVisual.PositionSize ball "color=red;shape=sphere;";
...

The string "color=red;" is used to set the color parameter of the object and the shape parameter controls how we
will display this object in the visualization.

The next step is to connect the position of the ball object to the simulation. Since Modelica is an equation
based language, we must have the same number of variables as equations in the model. This means that even
though the only aspect of the ball that is really interesting is its y-position, each variable in the ball object must be
assigned to an equation. Setting a variable to be constant zero is a valid equation. The SimpleVisual library con-
tains a number of generic objects which gives the user an increasing amount of control.

SimpleVisual.Position
SimpleVisual.PositionSize
SimpleVisual.PositionRotation
SimpleVisual.PositionRotationSize
SimpleVisual.PositionRotationSizeO_set

Since we are really only interested in the position of the ball, we could use SimpleVisual.Position, but to make
it a little bit more interesting we use SimpleVisual.PositionSize and make the ball a little bigger.

obj.size[1]=5; obj.size[2]=5; obj.size[3]=5;
obj.frame_a[1]=0; obj.frame_a[2]=h+obj.size[2]/2; obj.frame_a[3]=0;

A SimpleVisual.PositionSize object has two properties; size and frame_a. All are three dimensional real
numbers, or Real[3] in Modelica.

• size controls the size of the visual representation of the object.
• frame_a contains the position of the object.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

191

5.1.2 Running the Simulation and Starting Visualization

To be able to simulate the model with the added visualization, OpenModelica must load the SimpleVisual pack-
age.

loadLibrary(Modelica.SimpleVisual)

Now, call simulate once more. This time the simulation will generate values for the added SimpleVisual object
that can be read by the visualization in OMNotebook.

simulate(BouncingBall, start=0, end=5s);

To display the visualization, create an input cell and call the visualize in the input part of the cell.

visualize(BouncingBall);

Figure 5. 3D animation of the bouncing ball model.

5.2 Pendulum 3D Example

This example explores a slightly more complex scenario where the visualization uses all the properties of a
SimpleVisual object. The model used is a simple ideal 2D pendulum, not modeling properties like friction, air
resistance etc.
class MyPendulum "Planar Pendulum"
constant Real PI=3.141592653589793;
parameter Real m=1, g=9.81, L=5;
Real F;
Real x(start=5),y(start=0);
Real vx,vy;
equation
 m*der(vx)=-(x/L)*F;
 m*der(vy)=-(y/L)*F-m*g;
 der(x)=vx;
 der(y)=vy;
 x^2+y^2=L^2;
end MyPendulum;

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

192

Start by identifying the variables in the model that will be needed to create a visual representation of the simula-
tion.

• Real x and Real y hold the current position of the pendulum.
• Real L is a parameter which holds the length of the pendulum.

5.2.1 Adding the Visualization

As before, to be able to use the SimpleVisual package we must import it.
class MyPendulum "Planar Pendulum"
import Modelica.SimpleVisual;
...

Adding a sphere to represent the weight of the pendulum is done in the same way the BouncingBall was visual-
ized. The variables x and y hold the position.
...
Real vx,vy;
SimpleVisual.PositionSize ball "color=red;shape=ball;";
equation
 ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;
 ball.frame_a[1]=x; ball.frame_a[2]=y; ball.frame_a[3]=0;
 m*der(vx)=-(x/L)*F;
...

The next step is to create a visualization of the "thread" that holds the pendulum. It will be represented by a small
elongated cube connected to the ball in one end and in the fixed center of the pendulum movement. We will want
the object to rotate with the pendulum motion so create a SimpleVisual.PositionRotationSize object.

SimpleVisual.PositionRotationSize thread "shape=cube;"

To specify the rotation of an object, the visualization package uses two points. One is the position of the object,
frame_a, that has been demonstrated earlier. The other position, frame_b, is interpreted as the end point of a vec-
tor from frame_a. This vector is used as the new up direction for the object. In this example, defining frame_b is
simple. The cube that represents the thread will always be pointing to (0, 0, 0). We already know the length of the
thread from the parameter L.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;

Running this simulation and starting the visualization, we notice that everything is not quite right. The thread is
centered around the pendulum. We could calculate a new position by translating the x and y coordinates along the
rotation vector, but there is a better way. Change the object type to SimpleVi-

sual.PositionRotationSizeOffset. The offset parameter is a translation within the local coordinate system
of the object. To shift the center of the object to be at the bottom of the thread we add an offset of L/2 to the y
component of offset.

thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;

In the final model, a simple static fixture has also been added.
class MyPendulum "Planar Pendulum"
 import Modelica.SimpleVisual;
 constant Real PI=3.141592653589793;
 parameter Real m=1, g=9.81, L=5;
 Real F;
 Real x(start=5),y(start=0);
 Real vx,vy;
 SimpleVisual.PositionSize ball "color=red;shape=ball;";
 SimpleVisual.PositionSize fixture "shape=cube;";
 SimpleVisual.PositionRotationSizeOffset thread "shape=cube;";
equation

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

193

 fixture.size[1]=0.5; fixture.size[2]=0.1; fixture.size[3]=0.5;
 fixture.frame_a[1]=0; fixture.frame_a[2]=0; fixture.frame_a[3]=0;
 ball.size[1]=1.5; ball.size[2]=1.5; ball.size[3]=1.5;
 ball.frame_a[1]=x; ball.frame_a[2]=y; ball.frame_a[3]=0;
 thread.size[1]=0.05; thread.size[2]=L; thread.size[3]=0.05;
 thread.frame_a[1]=x; thread.frame_a[2]=y; thread.frame_a[3]=0;
 thread.frame_b[1]=0; thread.frame_b[2]=0; thread.frame_b[3]=0;
 thread.offset[1]=0; thread.offset[2]=L/2; thread.offset[3]=0;
 m*der(vx)=-(x/L)*F;
 m*der(vy)=-(y/L)*F-m*g;
 der(x)=vx;
 der(y)=vy;
 x^2+y^2=L^2;
end MyPendulum;

We simulate and visualize as previously:

Figure 6. Visualization with animation of 3D pendulum.

6 Conclusions and Future work
A new 2D plotting package and a new 3D graphics animation package have been designed and implemented for
visualizing results from Modelica model simulations within OpenModelica. The 2D plotting package has a new
flexible architecture that allows usage either directly from a running simulation, from the OMNotebook, or pro-
grammable graphics from within a Modelica model.

7 Acknowledgements
This work was supported by Vinnova in the Safe Modeling and Simulation Project and by SSF in the OpenMode-
lica Community Project.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

194

References
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David

Broman. The OpenModelica Modeling, Simulation, and Software Development Environment. In Simulation
News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

[2] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, 940 pp., ISBN 0-
471-471631, Wiley-IEEE Press, 2004.

[3] The Modelica Association. The Modelica Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[4] Peter Fritzson et al. The OpenModelica Users Guide. www.openmodelica.org.

[5] Trolltech. Qt. http://www.trolltech.com/, accessed July 2007.

[6] The Ptolemy Project. Ptplot. http://ptolemy.berkeley.edu/body.htm, accessed July 2007.

[7] Coin3D. www.coin3d.org, accessed August 2008.

[8] Henrik Eriksson. Advanced OpenModelica Plotting Package for Modelica. Master Thesis, LIU-IDA/LITH-
EX-A-08/036-SE, Linköping University Electronic Press, www.ep.liu.se, June 22, 2008.

[9] Henrik Magnusson. Integrated Generic 3D visualization of Modelica Models. Master Thesis, LIU-
IDA/LITH-EX-A-08/035-SE, Linköping University Electronic Press, www.ep.liu.se, June 27, 2008.

[10] Anders Fernström. Extending OMNotebook - An Interactive Notebook for Structured Modelica Documents.
Master's thesis, Linköping University Electronic Press, www.ep.liu.se, 2006.

[11] Ingemar Axelsson. OpenModelica, Notebook for Interactive Structured Modelica Documents. Master's the-
sis, Linköping University Electronic Press, www.ep.liu.se, 2005.

[12] Martin Otter. The Modelica MultiBody Library. http://www.modelica.org/libraries/Modelica, Mode-
lica.Mechanics.MultiBody, accessed August 2008.

[13] Vadim Engelson. Tools for Design, Interactive Simulation, and Visualization of Object-Oriented Models in
Scientific Computing. Ph.D. Thesis. Linköping Studies in Science and Technology, Dissertation No. 627,
http://www.ida.liu.se/~vaden/thesis/, 2000.

SIMS 49

www.scansims.org Proceedings of SIMS 2008
Oslo, Norway, October 7-8, 2008

195

